Stankrustand:

2)
$$L(A_2) = \{ aw \mid w \in \{ a_i b \}^* \}$$

 $v \in \{ b^n aw \mid n \in [N], w \in \{ a_i b \}^* \}$
 $= \{ b^n aw \mid n \in [N_0, w \in \{ a_i b \}^* \}$

3)
$$L(A_3) = \emptyset = \{\}$$
 $\neq \{E\}$

Feg. Audmick

5.2 1)
$$0 \xrightarrow{abab} 0 \xrightarrow{ab} 0 a$$

$$(2) \qquad (4) \qquad (4)$$

$$5.7 \ 5*(s(e) = s)$$
 $5*(s(aw) = 5*(5(s(a)), w)$

Bsp. aus Puch:

Stand: 2025-05-03

3/3

Endliche Automaten

Es sei $|w|_a$ die Anzahl der in w enthaltenen a. Das kann man formal am einfachsten rekursiv definieren:

- $|\varepsilon|_a = 0$
- $|aw|_a = 1 + |w|_a$
- $|bw|_a = |w|_a$ (für $b \neq a$)

ababababbaab agutartig"

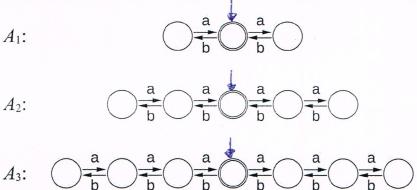
aaaaaaaaaa...

Wir definieren außerdem (nur für Zwecke dieser Aufgabe) die a-b-Differenz

$$\partial_{a,b}(w) := \text{abs} (|w|_a - |w|_b), \quad \text{mit abs} (x) = \text{Betrag von } x$$

Wenn das Wort w gleiche viele a wie b enthält, gilt also $\partial_{a,b}(w) = 0$, ansonsten $\partial_{a,b}(w) > 0$ Zur Erinnerung: $v \in \Sigma^*$ ist **Präfix** von $w \in \Sigma^*$, wenn w, mit v anfängt", also w = vr für ein $r \in \Sigma^*$.

a) Die Sprache $L_{a=b} := \{ w \in \{a, b\}^* : |w|_a = |w|_b \}$ ist nicht durch einen endlichen Automaten darstellbar. Um anschaulich herzuleiten, warum das so ist, betrachten Sie die folgenden Automaten:



 A_1 akzeptiert die Wörter w aus $L_{a=b}$, bei denen für jedes Präfix v von w gilt: $|v|_a$ und $|v|_b$ unterscheiden sich höchstens um $1: \partial_{a,b}(v) \leq 1$.

Der Zustand rechts vom Startzustand steht für "ein a mehr", der Zustand links für "ein b mehr".

 A_2 erweitert A_1 und akzeptiert dadurch auch Wörter, bei denen sich in Präfixen die Anzahlen der "a"s und "b"s um bis zu 2 unterscheiden können: $\partial_{a,b}(v) \leq 2$.

Auf gleiche Weise kann A_3 Worte akzeptieren, bei denen Präfixe eine a-b-Differenz von bis zu 3 haben: $\partial_{a,b}(v) \leq 3$.

Prüfen Sie, ob A_3 die Worte *abab*, *ababa*, *aaabbb* und *aaaabbbb* aus $L_{a=b}$ akzeptiert. Für die Worte, die er nicht akzeptiert: woran liegt das?

b) Wie sieht ein Automat A_4 aus, der Worte mit Präfixen mit a-b-Differenzen ≤ 4 akzeptiert?

c) Wie viele Zustände müssten Sie links und rechts hinzufügen, um ganz $L_{a=b}$ zu akzeptieren?